Industrial Energy Efficiency

Timothy Middelkoop, Ph.D., C.E.M t.middelkoop@ufl.edu University of Florida Industrial Assessment Center

How to Save Energy

- 1. Contract an energy audit
 - list of recommendations
 - act upon a subset of them (implementation)
 - one time savings (5-15%)
- 2. Implement an energy management program
 - hire or train energy aware technicians
 - support and implement energy based projects
 - consider energy in all decisions (purchasing, production, scheduling) at all levels
 - continuous improvement and savings (30%-70%)

UF Industrial Assessment Center

- DOE energy audits for small to medium sized manufacturing companies.
- Service North and Central Florida, South Georgia, and East Alabama.
- One or two day on-site audit followed by a detailed report and follow-up survey.
- Provide hands on energy management experience for engineering undergraduate and graduate students.

U.S. DEPARTMENT OF

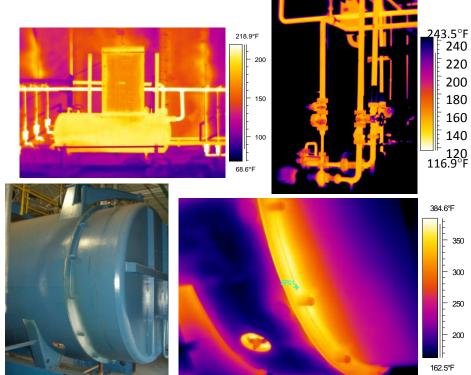
Energy Efficiency & Renewable Energy

DOE IAC Program

- 30+ year program; 26 University based centers
- Saved 243 trillion Btu in 2008
- As of 2008 2,855 IAC students graduated
- IAC Program benefits:
 - Objective information to help make plants cleaner more energy efficient
 - Engineering students receive hands-on industrial experience
 - Universities build valuable local industry relationships to maintain a practical focus in their engineering curriculum

The Audit Process

• <u>STEP 1</u>: **Pre-Assessment** Information Gathering


- Size of Plant and plant layout
- Industry type (SIC/ NAICS code) and process description
- Production levels, units and dollars, operating hours
- A one year history of utility bills
- List of major energy consuming equipment
- <u>STEP 2</u>: Ensure that key plant personnel are involved
 - Plant manger, Energy manager, Environmental personnel, Maintenance personnel

- STEP 3: Pre-Assessment Analysis
 - Analyze the manufacturing process
 - Analyze utility bills for trends and errors; establish unit cost of energy
 - Review design and other technical documentations
 - Identify possible energy saving potential recommendations
- STEP 4: Assessment
- <u>STEP 5</u>: **Post Assessment** Activities
 - Conduct engineering and financial analysis
 - Complete IAC Report
 - Follow-up to Report

Assessment Recommendation (AR)

- Types of recommendations:
 - Energy Management
 - Lighting systems
 - Motors & pumps
 - HVAC
 - Heat/cooling recovery
 - Compressed air
 - Steam generation
 - Insulation
 - Building envelope

 Recommendations contain detailed technical and financial analysis of the potential savings.

UF-IAC – Saving Energy

http://iac.rutgers.edu/database/statistics/?CENTER=UF

Recommended Savings		Usage Reduction		% Reduction		Cost (\$) Savings		Unit	
All Energy	21,2		58		18.5%	\$112,763		MMBtu	
Electrical		1,798,108		26.7%		\$92,185		kWh	
Natural Gas		1,256		5.1%		\$2,425		MMBtu	
Implemented Savings		Usage Reduction		% Reduction		Cost (\$) Savings		Unit	
All Energy	,	4,784		4.2%		\$26,167		MMBtu	
Electrical		400,283		5.9%		\$20,857		kWh	
Natural Ga	S	420		1.7%		\$2,146		MMBtu	
Initial Plant	Usa	ige	Cost (\$)	Unit Cost	Unit		Assessments:	
All Energy	6,745,730		\$559,848 \$376,186 \$104,044		\$6.80 \$0.062	MMBtu		Recommendations/a Implementations/au	
Electrical						kWh	Impl		
Natural Gas					\$2.69	MMBt	L		

Industrial Energy Efficiency; Timothy Middelkoop, Ph.D. C.E.M.

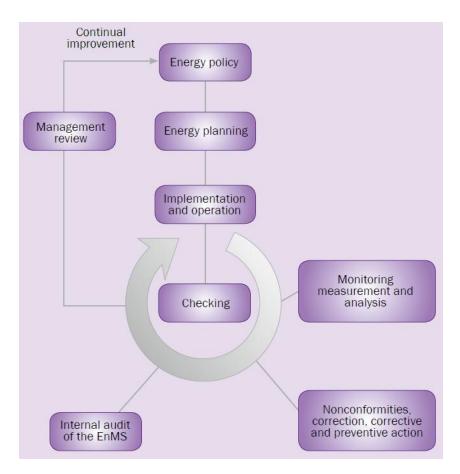
7

2011-09-26

Example Audit Recommendation

Replace Metal Halide (MH) lights with high bay fluorescent lighting.

- 400 Watt MH is cheap (\$10 bulb)
- T8 Fluorescent (high bay \$200, 6x\$5=\$30)
- MH has a restrike time (20 min)
- Fluorescent is 200 Watt and controllable
 - occupancy sensors (\$80)
 - dimmable for daylight sensing
- Payback? (400W-200W)*8760h=1.75kW·h


source: 1000bulbs.com, grainger.com Industrial Energy Efficiency; Timothy Middelkoop, Ph.D. C.E.M.

Quantifying Industrial Energy Savings

- Low hanging recommendations are often inexpensive, low risk, and most likely save money (5-15%).
- Large savings come from large investments and often have less marginal savings (30%?).
- Huge savings can come from process changes but most require intimate knowledge of the process (70%?).

Managing Energy

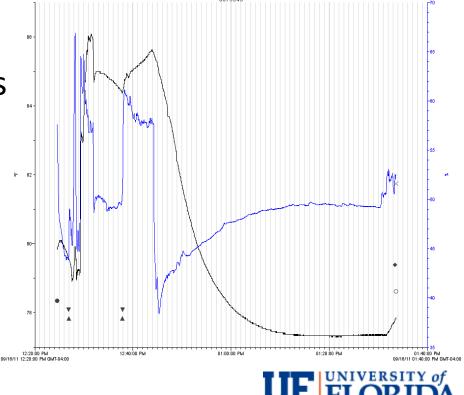
- Requires commitment (ISO 50001)
 - commitment to change
 - capital
 - continuous improvement
- Requires an educated workforce
- Requires data
- Requires validation

ISO 50001 plan-do-check-act cycle

An Educated Workforce

- Integrated into curriculum
 - motivate in introductory courses
 - provide tools in technical classes

- provide integration and experience with energy capstone course
- Industrial energy management classes
 - fundamentals of energy use
 - exposure to alternative technologies measurement and validation provide hands on experience (labs, audits, etc.)


http://grainger.com Industrial Energy Efficiency; Timothy Middelkoop, Ph.D. C.E.M.

Educated Savings (Data)

- Larger savings come from part load and process change
- Measurement and validation require data
 - standalone data loggers
 - handheld tools with
 data logging capability
 - equipment controls
 - process controls

http://onsetcomp.com, http://fluke.com

Industrial Energy Efficiency; Timothy Middelkoop, Ph.D. C.E.M.

2011-09-26

Putting it Together: Experience

- Hands on experience is invaluable
 - instrument training
 - combine measurement, data logging, savings prediction and validation
- Onsite audits are invaluable
- The work/home provides many learning opportunities
- Basic kits under \$100 (current/voltage/PF, temperature, air velocity calculator, stopwatch, service meters)

http://professionalequipment.com 44550, P4400, PDT550; http://amazon.com AR-816 Industrial Energy Efficiency; Timothy Middelkoop, Ph.D. C.E.M.

Energy Labs

- Assessment Training by Rutgers CASE (Preliminary DOE IAC program)
- Hands-on
- Fundamentals
- Measurement
- Low cost
- Portable

Continuing Education and Certification

- Certified Energy Manager (C.E.M) certification by the AAE
 - provides continuous continuing education
- DOE EERE website webinar series
 - many high quality educational materials, case studies, and software
 - webcasts, webinars etc. http://eere.energy.gov/industry/resources/webcasts.html
- Vendors often provide webinars and webcasts

References and Resources

- AEE CEM: <u>http://aeecenter.org</u>
- ISO 50001: <u>http://iso.org</u>
- DOE EERE ITP: <u>http://eere.energy.gov/industry</u>
- DOE IAC Program: <u>http://iac.rutgers.edu</u>
- Fluke instruments: <u>http://fluke.com</u>
- HOBO data loggers: <u>http://onsetcomp.com</u>

Questions?

t.middelkoop@ufl.edu

http://ise.ufl.edu/iac

(352) 392-7690

